Computing maximum weight independent sets in graphs is an important NP-hard optimization problem. The problem is particularly difficult to solve in large graphs for which data reduction techniques do not work well. To be more precise, state-of-the-art branch-and-reduce algorithms can solve many large-scale graphs if reductions are applicable. However, if this is not the case, their performance quickly degrades due to branching requiring exponential time. In this paper, we develop an advanced memetic algorithm to tackle the problem, which incorporates recent data reduction techniques to compute near-optimal weighted independent sets in huge sparse networks. More precisely, we use a memetic approach to recursively choose vertices that are likely to be in a large-weight independent set. We include these vertices into the solution, and then further reduce the graph. We show that identifying and removing vertices likely to be in large-weight independent sets opens up the reduction space and speeds up the computation of large-weight independent sets remarkably. Our experimental evaluation indicates that we are able to outperform state-of-the-art algorithms. For example, our algorithm computes the best results among all competing algorithms for 33 out of 35 instances. Thus can be seen as the dominating tool when large weight independent sets need to be computed in~practice.


翻译:在图形中计算最大重量独立数据集是一个重要的 NP- 硬优化问题。 这个问题在大图表中特别难以解决, 因为数据减少技术不成功。 更准确地说, 要更精确、 最先进的分节和减速算法可以解决许多大型图表, 如果适用减量的话。 但是, 如果情况不是这样, 它们的性能会因分流需要指数时间而迅速退化。 在本文中, 我们开发了一种先进的微量算法来解决问题, 其中包括最新的数据减少技术, 以在巨大的稀少的网络中计算接近最佳的加权独立数据集。 更准确地说, 我们用一种计量法来反复选择可能处于大量独立设置的脊椎。 我们将这些脊椎纳入解决方案中, 然后进一步降低图表。 我们显示, 确定和删除可能属于大量独立的脊椎, 将打开减少空间, 并加快大型独立组合的计算速度。 我们的实验性评估显示, 我们能够超越最优化的状态加权独立组合。 例中, 我们的重算法可以用来在最大比例分析中选择第35号 。 例如, 我们的算算算算出整个工具的大规模算方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员