The Trust Region Subproblem is a fundamental optimization problem that takes a pivotal role in Trust Region Methods. However, the problem, and variants of it, also arise in quite a few other applications. In this article, we present a family of iterative Riemannian optimization algorithms for a variant of the Trust Region Subproblem that replaces the inequality constraint with an equality constraint, and converge to a global optimum. Our approach uses either a trivial or a non-trivial Riemannian geometry of the search-space, and requires only minimal spectral information about the quadratic component of the objective function. We further show how the theory of Riemannian optimization promotes a deeper understanding of the Trust Region Subproblem and its difficulties, e.g., a deep connection between the Trust Region Subproblem and the problem of finding affine eigenvectors, and a new examination of the so-called hard case in light of the condition number of the Riemannian Hessian operator at a global optimum. Finally, we propose to incorporate preconditioning via a careful selection of a variable Riemannian metric, and establish bounds on the asymptotic convergence rate in terms of how well the preconditioner approximates the input matrix.
翻译:信任区域子问题是一个根本性的优化问题,在信任区域方法中扮演着关键角色。然而,问题及其变式也出现在另外几个应用中。在本篇文章中,我们为信任区域子问题的一个变式提供了一套迭接的里曼尼亚优化算法,用平等制约取代不平等制约,并趋向于全球最佳化。我们的方法使用搜索空间的微小或非三维里曼语几何法,只要求提供关于目标功能的四元组成部分的微小光谱信息。我们进一步展示了里曼尼亚优化理论如何促进加深对信任区域次问题及其困难的理解,例如,信任区域次问题与寻找亲子体问题之间的深刻联系,以及根据里曼尼亚海珊运营商的条件数目对全球最佳化的所谓硬案件进行新的审查。我们提议,通过仔细选择可变的里曼尼基质基本原理,将先决条件纳入一个可变的里曼尼基质基本原理,将基本原理确定为良好的标准。