Magnetic resonance imaging plays an important role in computer-aided diagnosis and brain exploration. However, limited by hardware, scanning time and cost, it's challenging to acquire high-resolution (HR) magnetic resonance (MR) image clinically. In this paper, fine perceptive generative adversarial networks (FP-GANs) is proposed to produce HR MR images from low-resolution counterparts. It can cope with the detail insensitive problem of the existing super-resolution model in a divide-and-conquer manner. Specifically, FP-GANs firstly divides an MR image into low-frequency global approximation and high-frequency anatomical texture in wavelet domain. Then each sub-band generative adversarial network (sub-band GAN) conquers the super-resolution procedure of each single sub-band image. Meanwhile, sub-band attention is deployed to tune focus between global and texture information. It can focus on sub-band images instead of feature maps to further enhance the anatomical reconstruction ability of FP-GANs. In addition, inverse discrete wavelet transformation (IDWT) is integrated into model for taking the reconstruction of whole image into account. Experiments on MultiRes_7T dataset demonstrate that FP-GANs outperforms the competing methods quantitatively and qualitatively.


翻译:磁共振成像在计算机辅助诊断和大脑探索中起着重要作用。然而,由于硬件、扫描时间和成本的限制,在临床临床上获取高分辨率磁共振图像具有挑战性。在本文中,建议从低分辨率对应方生成精细的感知基因对抗网络(FP-GANs)以生成高分辨率图像;它能够以分而分之的方式应对现有超级分辨率模型的详细不敏感问题。具体地说,FP-GANs首先将MR图像分为低频全球近似和高频解解剖质素,然后在波盘域内获取高分辨率全球近似和高频解剖质质素。然后,每个子频谱磁共振对立网络(次频子GAN)将征服每个子带图像的超分辨率对抗网络。同时,分波段关注将焦点放在全球和质谱信息之间的焦点上。它可以侧重于子波段图像,而不是地图图图图,以进一步加强FPP-GANs的解学重建能力。此外,反离离离子波波波波波波波波波和高频质质质质质质质变换(ID-GANS-QFS-S-S-ARIalFS-S-S-S-Set-Simml AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS MA AS AS AS AS AS AS MA MA MA AS AS AS AS AS MA AS AS AS AS AS AS AS AS AS AS AS AS AS IM IN AS AS AS AS AS AS AS AS IN IN IM IS IS IN IS IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP IP

1
下载
关闭预览

相关内容

磁流变(Magnetorheological,简称MR)材料是一种流变性能可由磁场控制的新型智能材料。由于其响应快(ms量级)、可逆性好(撤去磁场后,又恢复初始状态)、以及通过调节磁场大小来控制材料的力学性能连续变化,因而近年来在汽车、建筑、振动控制等领域得到广泛应用。
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Co-Training for Semi-Supervised Image Segmentation
Arxiv
8+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员