One method for obtaining generalizable solutions to machine learning tasks when presented with diverse training environments is to find invariant representations of the data. These are representations of the covariates such that the best model on top of the representation is invariant across training environments. In the context of linear Structural Equation Models (SEMs), invariant representations might allow us to learn models with out-of-distribution guarantees, i.e., models that are robust to interventions in the SEM. To address the invariant representation problem in a finite sample setting, we consider the notion of $\epsilon$-approximate invariance. We study the following question: If a representation is approximately invariant with respect to a given number of training interventions, will it continue to be approximately invariant on a larger collection of unseen SEMs? This larger collection of SEMs is generated through a parameterized family of interventions. Inspired by PAC learning, we obtain finite-sample out-of-distribution generalization guarantees for approximate invariance that holds probabilistically over a family of linear SEMs without faithfulness assumptions. Our results show bounds that do not scale in ambient dimension when intervention sites are restricted to lie in a constant size subset of in-degree bounded nodes. We also show how to extend our results to a linear indirect observation model that incorporates latent variables.
翻译:当在不同的培训环境中提出机器学习任务的普遍解决方案时,一种方法就是在提供不同的培训环境时,找到对数据不固定的表达方式。这些是数据的共变式的表示方式,因此,代表面上的最佳模式在培训环境中是变化不定的。在线性结构等式模型(SEMs)中,不变化的表示方式可能使我们能够学习具有分配之外保障的模型,即对在SEM中进行干预的强有力模型。为了在有限的抽样环境中解决不固定的表示方式问题,我们考虑了美元-美元-近似差异的概念。我们研究以下问题:如果代表面上的最佳模式在特定培训干预环境中是变化不定的。在更大的秘密结构分配模式模型(SEMs)中,差异性代表方式可能使我们能够学习具有分配之外保障的模型,即对在有限的抽样环境中进行干预的模型,我们获得的有限模式-分配性一般保证,以估计在不忠实的线性SEMs组大家庭中,我们研究的是以下问题:如果代表面的表示对一定程度的观察假设,它将继续对更多的收集SEMsm;我们的结果在不固定的层次上显示我们不具有某种程度的递定的变的数值。