Planar/flat configurations of fixed-angle chains and trees are well studied in the context of polymer science, molecular biology, and puzzles. In this paper, we focus on a simple type of fixed-angle linkage: every edge has unit length (equilateral), and each joint has a fixed angle of $90^\circ$ (orthogonal) or $180^\circ$ (straight). When the linkage forms a path (open chain), it always has a planar configuration, namely the zig-zag which alternating the $90^\circ$ angles between left and right turns. But when the linkage forms a cycle (closed chain), or is forced to lie in a box of fixed size, we prove that the flattening problem -- deciding whether there is a planar noncrossing configuration -- is strongly NP-complete. Back to open chains, we turn to the Hydrophobic-Hydrophilic (HP) model of protein folding, where each vertex is labeled H or P, and the goal is to find a folding that maximizes the number of H-H adjacencies. In the well-studied HP model, the joint angles are not fixed. We introduce and analyze the fixed-angle HP model, which is motivated by real-world proteins. We prove strong NP-completeness of finding a planar noncrossing configuration of a fixed-angle orthogonal equilateral open chain with the most H--H adjacencies, even if the chain has only two H vertices. (Effectively, this lets us force the chain to be closed.)
翻译:固定角链和树木的平面/ 平面配置在聚合科学、 分子生物学和谜题的背景下得到了很好的研究。 在本文中, 我们侧重于简单的固定角连接类型: 每个边缘都有单位长度( 等边), 每个连接都有一个固定角度 90 ⁇ crc$( orthogonal) 或 180 ⁇ circ$( stright) 。 当连接形成一个路径( 开放链) 时, 它总是有一个平面配置, 即 zig-zag 将 90 ⁇ circ$ 角度在左转和右转之间交替。 但是当链接形成一个循环( 封闭链) 或被迫处于固定大小的框框中时, 我们证明平面问题 -- 确定是否有不交错的平面配置。 回到开放链中, 我们转向了水上- 血压( HH) 折叠模式的模型只有H或P。 目标是找到一个折叠的折叠, 使H- h 的平面结构成为最坚固的模型, 我们的固定的固定的轨道 。 。 在我们看来, 固定的平面平面平面图中, 固定的平面图中, 我们的固定的平面图中, 。