While advances continue to be made in model-based clustering, challenges persist in modeling various data types such as panel data. Multivariate panel data present difficulties for clustering algorithms due to the unique correlation structure, a consequence of taking observations on several subjects over multiple time points. Additionally, panel data are often plagued by missing data and dropouts, presenting issues for estimation algorithms. This research presents a family of hidden Markov models that compensate for the unique correlation structures that arise in panel data. A modified expectation-maximization algorithm capable of handling missing not at random data and dropout is presented and used to perform model estimation.
翻译:暂无翻译