In color spaces where the chromatic term is given in polar coordinates, the shortest distance between colors of the same value is circular. By converting such a space into a complex polar form with a real-valued value axis, a color algebra for combining colors is immediately available. In this work, we introduce two complex space operations utilizing this observation: circular average filtering and circular linear interpolation. These operations produce Archimedean Spirals, thus guaranteeing that they operate along the shortest paths. We demonstrate that these operations provide an intuitive way to work in certain color spaces and that they are particularly useful for obtaining better filtering and interpolation results. We present a set of examples based on the perceptually uniform color space CIELAB or L*a*b* with its polar form CIEHLC. We conclude that representing colors in a complex space with circular operations can provide better visual results by exploitation of the strong algebraic properties of complex space C.
翻译:暂无翻译