We identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of at least 3.3% errors across the 10 datasets, where for example label errors comprise at least 6% of the ImageNet validation set. Putative label errors are identified using confident learning algorithms and then human-validated via crowdsourcing (51% of the algorithmically-flagged candidates are indeed erroneously labeled, on average across the datasets). Traditionally, machine learning practitioners choose which model to deploy based on test accuracy - our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets. Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet-50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by just 5%. Test set errors across the 10 datasets can be viewed at https://labelerrors.com and all label errors can be reproduced by https://github.com/cleanlab/label-errors.


翻译:我们发现10个最常用的计算机视觉、自然语言和音频数据集中的10个测试组的标签错误,然后研究这些标签错误可能影响基准结果的可能性。测试组的错误数量众多且广泛:我们估计10个数据集中平均至少有3.3%的错误,例如标签错误至少包含图像网络验证数据集的6%。使用可靠的学习算法来识别贴标签错误,然后通过众包验证人类的标签错误(在算法上滞后的候选人中,51%的人确实在整个数据集中被错误地贴上标签。传统上,机器学习从业者根据测试精确度选择采用哪种模型——我们的结论建议在此谨慎:在10个数据集中,对正确标签测试组的模型作出判断可能更有用,特别是对于噪音真实世界的数据集。令人惊讶的是,我们发现,在真实世界的数据集中,只有高比例的标签错误数据,因此更有用。例如,在经过校正标签的图像网上,只有 ResNet-18 超越了 ResNet- Experors ResNet- 50/50,如果最初的GA-SBB 测试模型的频率增加原的频率,则会增加V-BARBRBS/BSBBBBB 的样本样本样本中,则会增加。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Yoshua Bengio《Deep Learning》英文版及中文翻译
我爱机器学习
5+阅读 · 2016年12月7日
Arxiv
6+阅读 · 2021年10月26日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Yoshua Bengio《Deep Learning》英文版及中文翻译
我爱机器学习
5+阅读 · 2016年12月7日
相关论文
Arxiv
6+阅读 · 2021年10月26日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
5+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员