Face is one of the predominant means of person recognition. In the process of ageing, human face is prone to many factors such as time, attributes, weather and other subject specific variations. The impact of these factors were not well studied in the literature of face aging. In this paper, we propose a novel holistic model in this regard viz., ``Face Age progression With Attribute Manipulation (FAWAM)", i.e. generating face images at different ages while simultaneously varying attributes and other subject specific characteristics. We address the task in a bottom-up manner, as two submodules i.e. face age progression and face attribute manipulation. For face aging, we use an attribute-conscious face aging model with a pyramidal generative adversarial network that can model age-specific facial changes while maintaining intrinsic subject specific characteristics. For facial attribute manipulation, the age processed facial image is manipulated with desired attributes while preserving other details unchanged, leveraging an attribute generative adversarial network architecture. We conduct extensive analysis in standard large scale datasets and our model achieves significant performance both quantitatively and qualitatively.
翻译:在老龄化过程中,人的脸很容易受到许多因素的影响,如时间、属性、天气和其他特定主题的变异。这些因素的影响在面部老化的文献中没有得到很好的研究。在本文中,我们建议在这方面采用新的整体模式,即“脸部年龄增长与调节属性”(FAWAM)”,即在不同年龄生成脸部图像的同时,同时具有不同属性和其他特定主题特征。我们以自下而上的方式处理这项任务,作为两个子模块,即:面对年龄增长和面部属性操纵。对于面部老化,我们使用一种以金字塔形的典型对立面网络为特征的属性意识面部老化模型,这种模型可以模拟特定年龄的面部变化,同时保持内在主题特性。对于面部属性操纵,经过处理的面部图像以其他属性的特征为操纵,同时保持其他细节不变,同时利用属性的对抗性网络结构。我们在标准的大型数据集中进行广泛的分析,我们模型在定量和定性两方面都取得了显著的性能。