We present SIDER(Single-Image neural optimization for facial geometric DEtail Recovery), a novel photometric optimization method that recovers detailed facial geometry from a single image in an unsupervised manner. Inspired by classical techniques of coarse-to-fine optimization and recent advances in implicit neural representations of 3D shape, SIDER combines a geometry prior based on statistical models and Signed Distance Functions (SDFs) to recover facial details from single images. First, it estimates a coarse geometry using a morphable model represented as an SDF. Next, it reconstructs facial geometry details by optimizing a photometric loss with respect to the ground truth image. In contrast to prior work, SIDER does not rely on any dataset priors and does not require additional supervision from multiple views, lighting changes or ground truth 3D shape. Extensive qualitative and quantitative evaluation demonstrates that our method achieves state-of-the-art on facial geometric detail recovery, using only a single in-the-wild image.
翻译:我们提出SIDER(Sing-Image 神经神经优化,用于面部几何功能恢复),这是一种新型的光度优化方法,以不受监督的方式从单一图像中恢复详细的面部几何。受古典粗到软优化技术的启发,以及最近3D形状的隐性神经表达方式的进展,SIDER结合了先前基于统计模型的几何方法,并签署了距离函数(SDF),从单一图像中恢复面部细节。首先,它用以SDF为代表的可变模型估计了粗度几何方法。其次,它通过优化地面真实图像的光度损失来重建面部几何细节。与以前的工作不同,SIDER不依赖任何先前的数据集,也不需要从多种观点、照明变化或地面真相3D形状中进行更多的监督。广泛的定性和定量评估表明,我们的方法在面部几何细节恢复方面达到了最新水平,只使用单一的原始图像。