In this paper, we present a model-free learning-based control scheme for the soft snake robot to improve its contact-aware locomotion performance in a cluttered environment. The control scheme includes two cooperative controllers: A bio-inspired controller (C1) that controls both the steering and velocity of the soft snake robot, and an event-triggered regulator (R2) that controls the steering of the snake in anticipation of obstacle contacts and during contact. The inputs from the two controllers are composed as the input to a Matsuoka CPG network to generate smooth and rhythmic actuation inputs to the soft snake. To enable stable and efficient learning with two controllers, we develop a game-theoretic process, fictitious play, to train C1 and R2 with a shared potential-field-based reward function for goal tracking tasks. The proposed approach is tested and evaluated in the simulator and shows significant improvement of locomotion performance in the obstacle-based environment comparing to two baseline controllers.
翻译:在本文中,我们为软蛇机器人提出了一个无模范的学习控制计划,以改善其在杂乱的环境中的触觉动动性能。控制计划包括两个合作控制器:一个控制软蛇机器人方向和速度的生动控制器(C1),一个控制软蛇机器人方向和速度的生动控制器(R2),另一个控制器(R2),控制蛇方向,以备遇到障碍接触和接触时。两个控制器的投入组成成一个松松冈CPG网络的输入,以产生对软蛇的顺畅和有节制的活动输入。为了能够与两个控制器进行稳定和高效的学习,我们开发一个游戏-理论过程、虚构游戏,以训练C1和R2,共同发挥基于实地的潜在奖励功能,进行目标跟踪任务。提议的方法在模拟器中进行测试和评价,并显示与两个基线控制器相比,障碍环境中的定位性能有显著改善。