In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, good tracking accuracy often necessitates high feedback gains, which leads to undesirable stiff behaviors. The magnitude of these gains is anyways often strongly limited by the control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. %With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.


翻译:在基于任务的反动态控制中,用于遵循理想计划的参考加速度可以分解为进料和反馈轨迹。反馈术语用于跟踪不准确的动态模型或外部扰动造成的错误。对于未充分激活的、自由漂浮的机器人,如人类类人,良好的跟踪精确度往往需要高反馈收益,从而导致不可取的僵硬行为。这些收益的规模无论如何都受到控制带宽的极大限制。在本文件中,我们展示了如何通过纳入学习过的任务-空间参考加速度来减少反馈控制器所需的贡献。因此,我们i)改进了特定任务-空间参考加速度的执行,以及ii)提供了减少反馈收益的手段,从而使得系统更加合规。% 在系统方法下,我们还减少了模型参数的超常调整和反馈收益,而这往往出现在现实世界的实验中。与学习特定任务的联合质相比,这可能产生类似的效果,但可能导致不甚一般化。我们的方法直接了解了人类机器人应用度低端中心的任务-空间动态。Simal and real-breal-resulational roomal 的人类机器人应用性部分。

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年6月3日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
6+阅读 · 2017年11月27日
Arxiv
7+阅读 · 2018年12月26日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关VIP内容
专知会员服务
91+阅读 · 2021年6月3日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
6+阅读 · 2017年11月27日
Top
微信扫码咨询专知VIP会员