This paper considers a multi-user semantic and data communication (MU-SemDaCom) system, where a base station (BS) simultaneously serves users with different semantic and data tasks through a downlink multi-user multiple-input single-output (MU-MISO) channel. The coexistence of heterogeneous communication tasks, diverse channel conditions, and the requirements for digital compatibility poses significant challenges to the efficient design of MU-SemDaCom systems. To address these issues, we propose a multi-user adaptive source-channel coding (MU-ASCC) framework that adaptively optimizes deep neural network (DNN)-based source coding, digital channel coding, and superposition broadcasting. First, we employ a data-regression method to approximate the end-to-end (E2E) semantic and data distortions, for which no closed-form expressions exist. The obtained logistic formulas decompose the E2E distortion as the addition of the source and channel distortion terms, in which the logistic parameter variations are task-dependent and jointly determined by both the DNN and channel parameters. Then, based on the derived formulas, we formulate a weighted-sum E2E distortion minimization problem that jointly optimizes the source-channel coding rates, power allocation, and beamforming vectors for both the data and semantic users. Finally, an alternating optimization (AO) framework is developed, where the adaptive rate optimization is solved using the subgradient descent method, while the joint power and beamforming is addressed via the uplink-downlink duality (UDD) technique. Simulation results demonstrate that, compared with the conventional separate source-channel coding (SSCC) and deep joint source-channel coding (DJSCC) schemes that are designed for a single task, the proposed MU-ASCC scheme achieves simultaneous improvements in both the data recovery and semantic task performance.
翻译:暂无翻译