Graph Neural Networks (GNNs) have been successfully exploited in graph analysis tasks in many real-world applications. However, GNNs have been shown to have potential security issues imposed by adversarial samples generated by attackers, which achieved great attack performance with almost imperceptible perturbations. What limit the wide application of these attackers are their methods' specificity on a certain graph analysis task, such as node classification or link prediction. We thus propose GraphAttacker, a novel generic graph attack framework that can flexibly adjust the structures and the attack strategies according to the graph analysis tasks. Based on the Generative Adversarial Network (GAN), GraphAttacker generates adversarial samples through alternate training on three key components, the Multi-strategy Attack Generator (MAG), the Similarity Discriminator (SD), and the Attack Discriminator(AD). Furthermore, to achieve attackers within perturbation budget, we propose a novel Similarity Modification Rate (SMR) to quantify the similarity between nodes thus constrain the attack budget. We carry out extensive experiments and the results show that GraphAttacker can achieve state-of-the-art attack performance on graph analysis tasks of node classification, graph classification, and link prediction. Besides, we also analyze the unique characteristics of each task and their specific response in the unified attack framework. We will release GraphAttacker as an open-source simulation platform for future attack researches.


翻译:图像神经网络(GNNs)在许多现实世界应用中成功地在图形分析任务中被成功利用,然而,事实证明,GNNs具有由攻击者产生的对抗性样本造成的潜在安全问题,这些样本在几乎无法察觉的扰动下取得了巨大的攻击性能。这些袭击者的广泛应用是其方法在某图表分析任务中的特殊性,例如节点分类或链接预测。因此,我们提议了一个新型的Gapatecker通用图形攻击框架,这个框架可以根据图形分析任务灵活调整结构和攻击战略。根据General Aversarial网络(GAN),GapAttacker通过三个关键组成部分的替代培训生成了对抗性样本,这三个关键组成部分是多战略攻击发电机(MAG)、相似性区别器(SD)和攻击干扰器(AD)。此外,为了在扰动预算内找到攻击者,我们提议一个新的相似性调整率(SMRR),以量化各点之间的相似性,从而限制攻击预算。我们进行广泛的实验,结果显示,Attackercker的图表-Crealimalimalimal-Istrational ex Aliforationalation Aliforation Aliformal

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
44+阅读 · 2020年10月31日
近期必读的五篇KDD 2020【迁移学习 (TL) 】相关论文
专知会员服务
39+阅读 · 2020年8月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
10+阅读 · 2020年6月12日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
8+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员