Methods for extending -- generalizing or transporting -- inferences from a randomized trial to a target population involve conditioning on a large set of covariates that is sufficient for rendering the randomized and non-randomized groups exchangeable. Yet, decision-makers are often interested in examining treatment effects in subgroups of the target population defined in terms of only a few discrete covariates. Here, we propose methods for estimating subgroup-specific potential outcome means and average treatment effects in generalizability and transportability analyses, using outcome model-based (g-formula), weighting, and augmented weighting estimators. We consider estimating subgroup-specific average treatment effects in the target population and its non-randomized subset, and provide methods that are appropriate both for nested and non-nested trial designs. As an illustration, we apply the methods to data from the Coronary Artery Surgery Study to compare the effect of surgery plus medical therapy versus medical therapy alone for chronic coronary artery disease in subgroups defined by history of myocardial infarction.


翻译:扩大 -- -- 一般化或运输 -- -- 从随机试验到目标人口的推论方法 -- -- 从随机试验到目标人口的推论 -- -- 需要以大量共变法为条件,这些共变法足以使随机和非随机群体能够互换,然而,决策者往往有兴趣审查目标人群分组的治疗效果,这些分组仅以少数离散的共变法界定。这里,我们建议了估计各分组潜在潜在结果手段和平均治疗效果的方法,以及一般可变性和可迁移性分析中的平均治疗效果的方法,我们采用基于结果模型(g-公式)、加权和增加重量的估测器。我们考虑估计各分组在目标人群及其非随机化子群中的平均治疗效果,并提供适合巢状和非惯用试验设计的方法。举例来说,我们采用科诺氏动脉外科研究数据的方法,以比较外科外加医疗疗法的影响,以及在由心肌死亡史界定的分组中仅用于慢性动脉病的单体外科疗法。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识驱动的视觉知识学习,以VQA视觉问答为例,31页ppt
专知会员服务
35+阅读 · 2020年9月25日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Multiplier bootstrap for Bures-Wasserstein barycenters
Arxiv
0+阅读 · 2021年11月24日
Arxiv
0+阅读 · 2021年11月24日
Arxiv
0+阅读 · 2021年11月24日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员