The current literature on quantum key distribution (QKD) is mainly limited to the transmissions over fiber optic, atmospheric or satellite links and are not directly applicable to underwater environments with different channel characteristics. Absorption, scattering, and turbulence experienced in underwater channels severely limit the range of quantum communication links. In the first part of this thesis, we analyze the quantum bit error rate (QBER) and secret key rate (SKR) performance of the well-known BB84 protocol in underwater channels. As path loss model, we consider a modified version of Beer-Lambert formula which takes into account the effect of scattering. We derive a closed-form expression for the wave structure function to determine the average power transfer over turbulent underwater path and use this to obtain an upper bound on QBER as well as a lower bound on SKR. In the second part of this thesis, as a potential solution to overcome range limitations, we investigate a multi-hop underwater QKD where intermediate nodes between the source and destination nodes help the key distribution. We consider the deployment of passive relays which simply redirect the qubits to the next relay node or the receiver without any measurement. Based on the near-field analysis, we present the performance of relay-assisted QKD scheme in terms of QBER and SKR in different water types and turbulence conditions. In the last part of this thesis, we investigate the fundamental performance limits of decoy BB84 protocol over turbulent underwater channels and provide a comprehensive performance characterization. Based on near field analysis, we utilize the wave structure function to determine the average power transfer over turbulent underwater path and use this to obtain a lower bound on key generation rate. Based on this bound, we present the performance of decoy BB84 protocol in different water type.
翻译:关于量子键分布(QKD) 的当前文献主要限于光纤、大气或卫星链接的传输,不直接适用于具有不同频道特性的水下环境。水下通道中经历的吸收、散射和动荡严重限制了量子通信连接的范围。在本论文的第一部分,我们分析水下通道中众所周知的BB84协议的量位误差率(QKD)和秘密密钥率(SKR),作为路径丢失模型,我们考虑的是啤酒-Lambert公式的修改版本,该公式考虑到散射的效果。我们为波结构功能生成一个封闭式表达式表达式,以确定在动荡的水下通道上的平均功率转移,并利用这个表达式在QB上获得一个上层,作为克服范围限制的潜在解决方案。我们调查的是多波水下QD,在源和目的地节点节点之间的中间节点有助于关键分布。我们考虑在波地结构中部署被动继器,只是将电流电流电流电流电流运行到下方,在B级轨道上,我们使用Slevy 的性能性能测试中,我们使用Sleval 和B级的性能的性能 。在Slevalde 的性能分析中,我们使用Slation 和B的性能的性能的性能的性能的性能分析中,我们使用这个底部的性能的性能的性能,我们在S- b的性能的性能的性能,在B的性能分析中,在B的性能的性能的性能的性能的性能的性能的性能分析中,在B的性能的性能的性能中,在B的性能的性能的性能中,在B的性能分析中,在B的性能的性能的性能中,在B的性能上,在B的性能的性能上,在B的性能上,在B的性能上,在B的性能的性能上,在B的性能上,在B的性能的性能的性能的性能的性能的性能的性能的性能的性能的性能的性能的性能的性能的性能上,在B的性能中