Due to large reflection and diffraction losses in the THz band, it is arguable to achieve reliable links in the none-line-of-sight (NLoS) cases. Intelligent reflecting surfaces, although are expected to solve the blockage problem and enhance the system connectivity, suffer from power consumption and operation complexity. In this work, non-intelligent reflecting surface (NIRS), which are simply made of costless metal foils and have no signal configuration capability, are adopted to enhance the signal strength and coverage in the THz band. Channel measurements are conducted in typical indoor scenarios at 300 GHz band to validate the effectiveness of the NIRS. Based on the measurement results, the positive influences of the NIRS are studied, including the improvement of path power and coverage. Numerical results show that by invoking the NIRS, the power of reflected/scattering paths can be increased by more than 10 dB. Moreover, with the NIRS, over half area in the measured scenario has doubled received power and the coverage ratio for a 10 dB signal-to-noise ratio threshold is increased by up to 39%.


翻译:由于THz频带的反射和分解损失巨大,因此,在无视线(NLOS)情况下实现可靠的连接是可以论证的。智能反射表面,虽然预期会解决阻塞问题和加强系统连通性,但会受到动力消耗和操作复杂性的影响。在这项工作中,采用非智能反射表面(NIRS),仅由无成本的金属引信组成,没有信号配置能力,以提高THz频带的信号强度和覆盖范围。在典型的室内情景下,以300千兆赫频带进行频道测量,以验证NIRS的有效性。根据测量结果,对NIRS的积极影响进行研究,包括改进路径功率和覆盖范围。数字结果显示,借助NIRS,反射/震动路径的功率可以增加10dB以上。此外,随着NIRS的出现,所测情景中超过一半的区域获得的功率和10dB信号-噪音比率阈值的覆盖率增加了39%。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员