In this paper upper and lower bounds on the probability of decoding failure under maximum likelihood decoding are derived for different (nonbinary) Raptor code constructions. In particular four different constructions are considered; (i) the standard Raptor code construction, (ii) a multi-edge type construction, (iii) a construction where the Raptor code is nonbinary but the generator matrix of the LT code has only binary entries, (iv) a combination of (ii) and (iii). The latter construction resembles the one employed by RaptorQ codes, which at the time of writing this article represents the state of the art in fountain codes. The bounds are shown to be tight, and provide an important aid for the design of Raptor codes.


翻译:在本文中,根据最大可能性解码失败概率的上限和下限,为不同(非二元)猛禽代码构造得出了不同(非二元)猛禽代码解码失败的概率,其中特别考虑了四种不同的构造:(一) 标准猛禽代码构造,(二) 多端型建筑,(三) 猛禽代码非二元但远端代码发电机矩阵只有二进制条目的构造,(四) 组合(二) 和(三) 。 后一种构造类似于猛禽代码所使用的结构,在撰写本文章时,该代码代表喷泉代码中的艺术状态,其界限显示是紧凑的,为Rapptor代码的设计提供了重要的帮助。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月3日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员