This paper addresses the computation of normalized solid angle measure of polyhedral cones. This is well understood in dimensions two and three. For higher dimensions, assuming that a positive-definite criterion is met, the measure can be computed via a multivariable hypergeometric series. We present two decompositions of full-dimensional simplicial cones into finite families of cones satisfying the positive-definite criterion, enabling the use of the hypergeometric series to compute the solid angle measure of any polyhedral cone. Additionally, our second decomposition method yields cones with a special tridiagonal structure, reducing the number of required coordinates for the hypergeometric series formula. Furthermore, we investigate the convergence of the hypergeometric series for this case. Our findings provide a powerful tool for computing solid angle measures in high-dimensional spaces.
翻译:本文研究了多面锥体的归一化立体角度量计算问题。在二维和三维中这个问题比较清楚。在更高的维度中,假设满足正定判定规则,该度量可以通过多元超几何级数来计算。我们提供了两个完全维度的简单锥体分解,分别满足正定判定规则,从而使用超几何级数计算任意多面锥体的立体角度量。此外,我们的第二种分解方法产生了一些具有特殊三对角结构的锥体,从而减少了超几何级数公式所需的坐标数。此外,我们还研究了该情况下超几何级数的收敛性。我们的结果为在高维空间计算立体角度量提供了一个强大的工具。