Due to the limitations of inadequate Whole-Slide Image (WSI) samples with weak labels, pseudo-bag-based multiple instance learning (MIL) appears as a vibrant prospect in WSI classification. However, the pseudo-bag dividing scheme, often crucial for classification performance, is still an open topic worth exploring. Therefore, this paper proposes a novel scheme, ProtoDiv, using a bag prototype to guide the division of WSI pseudo-bags. Rather than designing complex network architecture, this scheme takes a plugin-and-play approach to safely augment WSI data for effective training while preserving sample consistency. Furthermore, we specially devise an attention-based prototype that could be optimized dynamically in training to adapt to a classification task. We apply our ProtoDiv scheme on seven baseline models, and then carry out a group of comparison experiments on two public WSI datasets. Experiments confirm our ProtoDiv could usually bring obvious performance improvements to WSI classification.
翻译:由于缺乏强标签的整张图像(WSI)样本的限制,基于伪包的多实例学习(MIL)似乎是WSI分类的充满活力的前景。然而,伪包划分方案往往对分类性能至关重要,是一个值得探索的开放性课题。因此,本文提出了一种新颖的方案ProtoDiv,使用一个包原型来指导WSI伪包的分割。此方案采用插件式方法,而不是设计复杂的网络架构,以安全地增加WSI数据以进行有效训练,同时保持样本的一致性。此外,我们特别设计了一种基于注意力的原型,该原型可在训练中动态优化以适应分类任务。我们将我们的ProtoDiv方案应用于七个基准模型,然后在两个公共WSI数据集上进行一组比较实验。实验证实,我们的ProtoDiv通常可以显着提高WSI分类的性能。