In clinical and epidemiological research doubly truncated data often appear. This is the case, for instance, when the data registry is formed by interval sampling. Double truncation generally induces a sampling bias on the target variable, so proper corrections of ordinary estimation and inference procedures must be used. Unfortunately, the nonparametric maximum likelihood estimator of a doubly truncated distribution has several drawbacks, like potential non-existence and non-uniqueness issues, or large estimation variance. Interestingly, no correction for double truncation is needed when the sampling bias is ignorable, which may occur with interval sampling and other sampling designs. In such a case the ordinary empirical distribution function is a consistent and fully efficient estimator that generally brings remarkable variance improvements compared to the nonparametric maximum likelihood estimator. Thus, identification of such situations is critical for the simple and efficient estimation of the target distribution. In this paper we introduce for the first time formal testing procedures for the null hypothesis of ignorable sampling bias with doubly truncated data. The asymptotic properties of the proposed test statistic are investigated. A bootstrap algorithm to approximate the null distribution of the test in practice is introduced. The finite sample performance of the method is studied in simulated scenarios. Finally, applications to data on onset for childhood cancer and Parkinson's disease are given. Variance improvements in estimation are discussed and illustrated.
翻译:在临床和流行病学研究中,往往会出现双重缺漏的数据。例如,当数据登记册通过间隙取样形成时,就会出现这种情况。双重缺漏通常导致对目标变量的抽样偏差,因此必须使用对普通估计和推算程序的适当校正。不幸的是,对双重缺漏分布的不对称最大可能性估测器有几个缺点,如潜在的不存在和不统一问题,或大的估算差异。有趣的是,当取样偏差可忽略时,无需对重复漏报进行纠正,这种偏差可能发生在间隔取样和其他取样设计中。在这种情况下,普通的经验分配功能是一个一致和完全有效的估计符,与非对称最大可能性的估测器相比,通常带来显著的差异改进。因此,确定这种情形对于简单和高效地估计目标分布至关重要。在本文件中,我们首次介绍对与二元漏漏报数据相比的可忽略抽样偏差的无效假设进行正式测试程序。在这种情况下,将讨论拟议的试验分布的描述性特征特性。在研究阶段,将研究组织测试结果的演算法,将分析结果的演算结果,将分析结果的演算结果,以分析结果的演算方法。在最后,将研究。将分析结果的演算结果的演算结果的演算结果的演算方法,将分析结果的演算结果的演算方法将研究。