Due to the well-known computational showstopper of the exact Maximum Likelihood Estimation (MLE) for large geospatial observations, a variety of approximation methods have been proposed in the literature, which usually require tuning certain inputs. For example, the recently developed Tile Low-Rank approximation (TLR) method involves many tuning parameters, including numerical accuracy. To properly choose the tuning parameters, it is crucial to adopt a meaningful criterion for the assessment of the prediction efficiency with different inputs, which the most commonly-used Mean Square Prediction Error (MSPE) criterion and the Kullback-Leibler Divergence criterion cannot fully describe. In this paper, we present three other criteria, the Mean Loss of Efficiency (MLOE), Mean Misspecification of the Mean Square Error (MMOM), and Root mean square MOM (RMOM), and show numerically that, in comparison with the common MSPE criterion and the Kullback-Leibler Divergence criterion, our criteria are more informative, and thus more adequate to assess the loss of the prediction efficiency by using the approximated or misspecified covariance models. Hence, our suggested criteria are more useful for the determination of tuning parameters for sophisticated approximation methods of spatial model fitting. To illustrate this, we investigate the trade-off between the execution time, estimation accuracy, and prediction efficiency for the TLR method with extensive simulation studies and suggest proper settings of the TLR tuning parameters. We then apply the TLR method to a large spatial dataset of soil moisture in the area of the Mississippi River basin, and compare the TLR with the Gaussian predictive process and the composite likelihood method, showing that our suggested criteria can successfully be used to choose the tuning parameters that can keep the estimation or the prediction accuracy in applications.


翻译:由于对大型地理空间观测的精确最大隐差估计值(MLE)的计算显示是众所周知的,因此文献中提出了各种近似方法,通常需要调整某些投入。例如,最近开发的Tile Low-Rank近差(TLR)方法涉及许多调试参数,包括数字精确度。要正确选择调试参数,关键是要采用一个有意义的标准来评估不同投入的预测效率,而最常用的平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员