Deep-learning of artificial neural networks (ANNs) is creating highly functional tools that are, unfortunately, as hard to interpret as their natural counterparts. While it is possible to identify functional modules in natural brains using technologies such as fMRI, we do not have at our disposal similarly robust methods for artificial neural networks. Ideally, understanding which parts of an artificial neural network perform what function might help us to address a number of vexing problems in ANN research, such as catastrophic forgetting and overfitting. Furthermore, revealing a network's modularity could improve our trust in them by making these black boxes more transparent. Here we introduce a new information-theoretic concept that proves useful in understanding and analyzing a network's functional modularity: the relay information $I_R$. The relay information measures how much information groups of neurons that participate in a particular function (modules) relay from inputs to outputs. Combined with a greedy search algorithm, relay information can be used to {\em identify} computational modules in neural networks. We also show that the functionality of modules correlates with the amount of relay information they carry.
翻译:深入学习人工神经网络(ANNS)正在创造功能性很强的工具,不幸的是,这些工具与自然的同类工具一样难以解释。虽然使用FMRI等技术可以确定自然大脑中的功能模块,但我们没有类似的人工神经网络的可靠方法。理想的情况是,了解人工神经网络的哪个部分能起到什么作用,可以帮助我们解决ANN研究中的一些棘手问题,例如灾难性的遗忘和过度装配。此外,披露网络的模块性可以通过使这些黑盒更加透明来增进我们对它们的信任。我们在这里引入了一个新的信息理论概念,这证明有助于理解和分析网络的功能模块性:中继信息 $I_R$。中继信息衡量参与特定功能(模块) 从输入到产出的传输的神经信息组的数量。结合贪婪的搜索算法,中继信息可以用来识别神经网络中的计算模块。我们还显示模块的功能与它们携带的中继信息的数量相关。