This paper investigates the large sample properties of local regression distribution estimators, which include a class of boundary adaptive density estimators as a prime example. First, we establish a pointwise Gaussian large sample distributional approximation in a unified way, allowing for both boundary and interior evaluation points simultaneously. Using this result, we study the asymptotic efficiency of the estimators, and show that a carefully crafted minimum distance implementation based on "redundant" regressors can lead to efficiency gains. Second, we establish uniform linearizations and strong approximations for the estimators, and employ these results to construct valid confidence bands. Third, we develop extensions to weighted distributions with estimated weights and to local $L^{2}$ least squares estimation. Finally, we illustrate our methods with two applications in program evaluation: counterfactual density testing, and IV specification and heterogeneity density analysis. Companion software packages in Stata and R are available.
翻译:本文调查了本地回归分布估计值的大量样本特性, 其中包括一组边界适应性密度估计值, 作为主要例子 。 首先, 我们以统一的方式建立一个点针高西亚大型样本分布近似值, 允许同时同时进行边界和内部评估点 。 使用这一结果, 我们研究估测器的零点效率, 并显示根据“ 冗余” 递减器精心设计的最小距离执行率可以提高效率。 其次, 我们为估测器建立统一的线性化和强度近似值, 并使用这些结果构建有效的信任带 。 第三, 我们开发加权分布的扩展, 估计重量, 以及本地 $L2} 最低平方估计值 。 最后, 我们用两种方案评价应用的方法来说明我们的方法: 反事实密度测试, 以及 IV 规格和 异质密度分析。 斯塔塔 和 R 的兼容软件包是可用的 。