Newton-step approximations to pseudo maximum likelihood estimates of spatial autoregressive models with a large number of parameters are examined, in the sense that the parameter space grows slowly as a function of sample size. These have the same asymptotic efficiency properties as maximum likelihood under Gaussianity but are of closed form. Hence they are computationally simple and free from compactness assumptions, thereby avoiding two notorious pitfalls of implicitly defined estimates of large spatial autoregressions. For an initial least squares estimate, the Newton step can also lead to weaker regularity conditions for a central limit theorem than those extant in the literature. A simulation study demonstrates excellent finite sample gains from Newton iterations, especially in large multiparameter models for which grid search is costly. A small empirical illustration shows improvements in estimation precision with real data.


翻译:对具有大量参数的空间自动递减模型的假最大概率估计的牛顿步骤近似值进行了研究,其含义是,参数空间随着样本大小的函数而缓慢地增长,这些参数空间具有与高斯度下最大可能性相同的微量效率特性,这些特性与高斯度下的最大可能性相同,但却是封闭式的。因此,它们计算简单,不受紧凑性假设的影响,从而避免了隐含定义的大空间自动递减估计的两处臭名昭著的陷阱。对于最初的最小方形估计来说,牛顿步骤还可能导致一个中央限值的常规性条件比文献中的现有值差。一项模拟研究显示,从牛顿的迭代中,特别是在大型多参数模型中,由于电网搜索成本很高,获得了极好的有限样本收益。一个小的实验性说明表明,用真实数据来估计精确度的改进了。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新《生成式对抗网络GAN时空数据应用》综述论文,28pdf
专知会员服务
61+阅读 · 2020年3月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
1+阅读 · 2021年5月16日
Arxiv
0+阅读 · 2021年5月14日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员