Emerging quantum algorithms for problems such as element distinctness, subset sum, and closest pair demonstrate computational advantages by relying on abstract data structures. Practically realizing such an algorithm as a program for a quantum computer requires an efficient implementation of the data structure whose operations correspond to unitary operators that manipulate quantum superpositions of data. To correctly operate in superposition, an implementation must satisfy three properties -- reversibility, history independence, and bounded-time execution. Standard implementations, such as representing an abstract set as a hash table, fail these properties, calling for tools to develop specialized implementations. In this work, we present Core Tower, the first language for quantum programming with random-access memory. Core Tower enables the developer to implement data structures as pointer-based, linked data. It features a reversible semantics enabling every valid program to be translated to a unitary quantum circuit. We present Boson, the first memory allocator that supports reversible, history-independent, and constant-time dynamic memory allocation in quantum superposition. We also present Tower, a language for quantum programming with inductive data structures. Tower features a type system that bounds all recursion using classical parameters. Using Tower, we implement Ground, the first quantum library of data structures, including lists, stacks, queues, strings, and sets. We provide the first executable implementation of sets that satisfies all three mandated properties of reversibility, history independence, and bounded-time execution.


翻译:针对元素差异性、子数和最接近对等问题的新兴量算算法通过依靠抽象数据结构来显示计算优势。在实际实现像量子计算机程序这样的算法时,需要高效率地实施数据结构,其操作与操纵量子叠加数据的统一操作者相对应。为了在叠加状态中正确运行,执行必须满足三种特性 -- -- 可逆性、历史独立和捆绑时间执行。标准执行,如代表散列的抽象数据集,无法满足这些特性,需要开发专门执行的工具。在这个工作中,我们展示核心塔,这是随机存取存储存储的量编程的第一语言。核心塔使开发者能够将数据结构作为基于点的链接数据执行。它具有可逆性静音,使每个有效的程序能够转换成一个统一的量子电路路路。我们介绍第一个内存感应源,所有支持可逆性、历史依赖性和可恒定时动态记忆分配的音量超置状态。我们还展示塔,一种具有感应性数据结构的量编程语言, 塔使开发者能够将数据结构作为基于点基的、直径直径立的系统结构结构,我们使用直立的立的直径序列结构, 提供了所有直立的立的直径结构,我们使用直径径序列的立的立的立的立的序列的立的立的序列的系统,提供。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Testing the identification of causal effects in data
Arxiv
0+阅读 · 2022年7月19日
Arxiv
0+阅读 · 2022年7月19日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员