We present a classical algorithm that, for any 3D geometrically-local, polylogarithmic-depth quantum circuit $C$ acting on $n$ qubits, and any bit string $x\in\{0,1\}^n$, can compute the quantity $|< x |C|0^{\otimes n}>|^2$ to within any inverse-polynomial additive error in quasi-polynomial time. It is known that it is $\#P$-hard to compute this same quantity to within $2^{-n^2}$ additive error [Mov20, KMM21]. The previous best known algorithm for this problem used $O(2^{n^{1/3}}\text{poly}(1/\epsilon))$ time to compute probabilities to within additive error $\epsilon$ [BGM20]. Notably, the [BGM20] paper included an elegant polynomial time algorithm for this estimation task restricted to 2D circuits, which makes a novel use of 1D Matrix Product States (MPS) carefully tailored to the 2D geometry of the circuit in question. Surprisingly, it is not clear that it is possible to extend this use of MPS to address the case of 3D circuits in polynomial time. This raises a natural question as to whether the computational complexity of the 3D problem might be drastically higher than that of the 2D problem. In this work we address this question by exhibiting a quasi-polynomial time algorithm for the 3D case. In order to surpass the technical barriers encountered by previously known techniques we are forced to pursue a novel approach. Our algorithm has a Divide-and-Conquer structure, demonstrating how to approximate the desired quantity via several instantiations of the same problem type, each involving 3D-local circuits on about half the number of qubits as the original. This division step is then applied recursively, expressing the original quantity as a weighted combination of smaller and smaller 3D-local quantum circuits. A central technical challenge is to control correlations arising from entanglement that may exist between the different circuit ``pieces" produced this way.
翻译:我们提出了一个经典算法, 对任何 3D 本地、 多logarith- 深度量子电路, 3D 以 qubits 美元计算, 以及任何位数字符串 $x\ in ⁇ 0, 1 ⁇ n 美元, 可以将 $* x ⁇ C ⁇ 0 ⁇ otimes n ⁇ 2 计算成 半圆形添加错误 。 众所周知, 以 $2 qual- n%2} 来计算相同数量, 以 $@qual- dial discrible discrible rical ridical o差 [MGM20], 以 3D dicredical discrifical 运算法, 以 3D macrecial- driversal ral ral ral ral rals ral maisals maism 。 以 3D dismissional oral oral orals ormission maismission 将 问题推解为一种不同的问题存在。 [Bral dromomomomod 问题, romomomod romomomomomocal dismod romomodal dismod romod romod romodal dismodal dismamodal dismod mamodal romodal romod 问题, romodal romod romo romod romod romod romod romod romodal 问题, romodal romodal 问题。 问题, romodal 问题, ma d romodal ma dismodal ma dismodal romod romod mod ma ma ma ma ma ma ma ma ma d modal mod modal modal mod ma ma ma ma ma ma