This work considers a Poisson noise channel with an amplitude constraint. It is well-known that the capacity-achieving input distribution for this channel is discrete with finitely many points. We sharpen this result by introducing upper and lower bounds on the number of mass points. Concretely, an upper bound of order $\mathsf{A} \log^2(\mathsf{A})$ and a lower bound of order $\sqrt{\mathsf{A}}$ are established where $\mathsf{A}$ is the constraint on the input amplitude. In addition, along the way, we show several other properties of the capacity and capacity-achieving distribution. For example, it is shown that the capacity is equal to $ - \log P_{Y^\star}(0)$ where $P_{Y^\star}$ is the optimal output distribution. Moreover, an upper bound on the values of the probability masses of the capacity-achieving distribution and a lower bound on the probability of the largest mass point are established. Furthermore, on the per-symbol basis, a nonvanishing lower bound on the probability of error for detecting the capacity-achieving distribution is established under the maximum a posteriori rule.


翻译:这项工作考虑的是带有振幅限制的 Poisson 噪声频道。 众所周知, 该频道的容量实现输入分布是限制输入振幅的。 我们通过引入质量点数的上下界限来放大这个结果。 具体地说, $\ mathsf{ A}\ log2\\\\ mathsf{A} $ 的上限值和下限 $\ sqrt\ mathsf{A} 。 此外, $\ mathsf{A} 的上限是输入振幅的制约值。 此外, 沿路我们展示了能力和能力实现分布的若干其他属性。 例如, 显示能力等于$ -\ log P ⁇ _\\\\\\\\\\\\ mathsf{A} (0) 的上限值, 美元是最佳输出分布值。 此外, 能力达到能力分布概率的上限是最大值的上限。 在测测测底镜规则下, 概率为最低的概率。

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
三味Capsule:矩阵Capsule与EM路由
PaperWeekly
10+阅读 · 2018年3月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月28日
Arxiv
0+阅读 · 2021年9月26日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
三味Capsule:矩阵Capsule与EM路由
PaperWeekly
10+阅读 · 2018年3月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员