This work considers a Poisson noise channel with an amplitude constraint. It is well-known that the capacity-achieving input distribution for this channel is discrete with finitely many points. We sharpen this result by introducing upper and lower bounds on the number of mass points. Concretely, an upper bound of order $\mathsf{A} \log^2(\mathsf{A})$ and a lower bound of order $\sqrt{\mathsf{A}}$ are established where $\mathsf{A}$ is the constraint on the input amplitude. In addition, along the way, we show several other properties of the capacity and capacity-achieving distribution. For example, it is shown that the capacity is equal to $ - \log P_{Y^\star}(0)$ where $P_{Y^\star}$ is the optimal output distribution. Moreover, an upper bound on the values of the probability masses of the capacity-achieving distribution and a lower bound on the probability of the largest mass point are established. Furthermore, on the per-symbol basis, a nonvanishing lower bound on the probability of error for detecting the capacity-achieving distribution is established under the maximum a posteriori rule.
翻译:这项工作考虑的是带有振幅限制的 Poisson 噪声频道。 众所周知, 该频道的容量实现输入分布是限制输入振幅的。 我们通过引入质量点数的上下界限来放大这个结果。 具体地说, $\ mathsf{ A}\ log2\\\\ mathsf{A} $ 的上限值和下限 $\ sqrt\ mathsf{A} 。 此外, $\ mathsf{A} 的上限是输入振幅的制约值。 此外, 沿路我们展示了能力和能力实现分布的若干其他属性。 例如, 显示能力等于$ -\ log P ⁇ _\\\\\\\\\\\\ mathsf{A} (0) 的上限值, 美元是最佳输出分布值。 此外, 能力达到能力分布概率的上限是最大值的上限。 在测测测底镜规则下, 概率为最低的概率。