We exhibit an $O((\log k)^6)$-competitive randomized algorithm for the $k$-server problem on any metric space. It is shown that a potential-based algorithm for the fractional $k$-server problem on hierarchically separated trees (HSTs) with competitive ratio $f(k)$ can be used to obtain a randomized algorithm for any metric space with competitive ratio $f(k)^2 O((\log k)^2)$. Employing the $O((\log k)^2)$-competitive algorithm for HSTs from our joint work with Bubeck, Cohen, Lee, and M\k{a}dry (2017) yields the claimed bound. The best previous result independent of the geometry of the underlying metric space is the $2k-1$ competitive ratio established for the deterministic work function algorithm by Koutsoupias and Papadimitriou (1995). Even for the special case when the underlying metric space is the real line, the best known competitive ratio was $k$. Since deterministic algorithms can do no better than $k$ on any metric space with at least $k+1$ points, this establishes that for every metric space on which the problem is non-trivial, randomized algorithms give an exponential improvement over deterministic algorithms.
翻译:我们展示了 $O (( log k)\ 6) 的竞争性随机算法, 用于任何计量空间的 $k美元服务器问题。 事实证明, 在分层分隔的树木( HSTs) 上, 具有竞争性比率 $f (k) $ (k) $ 6) 的分数 服务器问题, 可以使用 $( log k) 2 O (( log k) 2) 美元 的竞争性随机算法 。 在与布贝克、 科恩、 Lee 和 M\ k{ a dry ( 2017) 的联合工作中, 使用 $( log k) 2) 美元 的HST 的竞争性算法 。 事实证明, 以分层分隔为分层的 $ $ $ ( M\ k) ) 服务器问题的潜在算法是 。 之前, 由 Koutsoupricaltical 运算法 3 3 4 4, 10 美元 美元 美元 4 4 美元 4 4 美元 4 4 4 4 4 4, 4 4 4 4 4 4 4, 4 4 4 4 4 4 4 4 4 4 4 4 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 4x算算算算算法 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4