This paper proposes novel computational multiscale methods for linear second-order elliptic partial differential equations in nondivergence-form with heterogeneous coefficients satisfying a Cordes condition. The construction follows the methodology of localized orthogonal decomposition (LOD) and provides operator-adapted coarse spaces by solving localized cell problems on a fine scale in the spirit of numerical homogenization. The degrees of freedom of the coarse spaces are related to nonconforming and mixed finite element methods for homogeneous problems. The rigorous error analysis of one exemplary approach shows that the favorable properties of the LOD methodology known from divergence-form PDEs, i.e., its applicability and accuracy beyond scale separation and periodicity, remain valid for problems in nondivergence-form.
翻译:本文建议采用新的多尺度计算方法,对线性二阶椭圆形部分差异方程式的线性二等离子体,采用符合Cordes条件的异差系数,其构造采用局部正方位分解方法,并本着数字同质化的精神,以微小的规模解决本地化细胞问题,从而提供经操作者调适的粗粗体空间,粗体空间的自由度与同质问题的不兼容和混合的有限元素法有关。对一种示范性方法的严格误差分析表明,从差异式PDEs(即其适用性和准确性超过尺度分拆和周期)中了解到的液态分解法方法的有利性,对于非差异式PDEs(即其适用性和准确性)中的问题仍然有效。