Half graphs and their variants, such as ladders, semi-ladders and co-matchings, are combinatorial objects that encode total orders in graphs. Works by Adler and Adler (Eur. J. Comb.; 2014) and Fabia\'nski et al. (STACS; 2019) prove that in the powers of sparse graphs, one cannot find arbitrarily large objects of this kind. However, these proofs either are non-constructive, or provide only loose upper bounds on the orders of half graphs and semi-ladders. In this work we provide nearly tight asymptotic lower and upper bounds on the maximum order of half graphs, parameterized on the distance, in the following classes of sparse graphs: planar graphs, graphs with bounded maximum degree, graphs with bounded pathwidth or treewidth, and graphs excluding a fixed clique as a minor. The most significant part of our work is the upper bound for planar graphs. Here, we employ techniques of structural graph theory to analyze semi-ladders in planar graphs through the notion of cages, which expose a topological structure in semi-ladders. As an essential building block of this proof, we also state and prove a new structural result, yielding a fully polynomial bound on the neighborhood complexity in the class of planar graphs.
翻译:半平面图及其变体,如梯子、半梯子和共同匹配,是组合对象,在图形中编码总顺序。Adler和Adler的作品(Eur.J.Comb.;2014年)和Fabia\'nski等人的作品(STACS;2019年)证明,在稀薄图的功率中,无法找到这种类型的任意大对象。然而,这些证明要么是非构件,要么只提供半图和半梯子的顺序上线松散。在这项工作中,我们提供了近乎紧紧的低端和上端线的半端图单线(Eur.J.Comb.;2014年)和Adler的作品。Adler和Adler(Eur.J.J.J.J.Comb.;2014年)和Fabialdr.(ST.)的作品:平面图的平面图、带线条纹的图和图中不包括固定的细面图。我们工作的最重要的部分是平面图的上框。在这里,我们使用结构图中结构图的理论理论理论理论 分析半拉图的底部结构结构结构图中,也是我们所需要的图的底部。