In this paper, we study the convergence properties of off-policy policy improvement algorithms with state-action density ratio correction under function approximation setting, where the objective function is formulated as a max-max-min optimization problem. We characterize the bias of the learning objective and present two strategies with finite-time convergence guarantees. In our first strategy, we present algorithm P-SREDA with convergence rate $O(\epsilon^{-3})$, whose dependency on $\epsilon$ is optimal. In our second strategy, we propose a new off-policy actor-critic style algorithm named O-SPIM. We prove that O-SPIM converges to a stationary point with total complexity $O(\epsilon^{-4})$, which matches the convergence rate of some recent actor-critic algorithms in the on-policy setting.


翻译:在本文中,我们研究了非政策性政策改进算法与功能近似设置下国家-行动密度比率校正的趋同特性,在功能近似设置下,目标函数被设定为最大最大最大最大最大最大最大优化问题。我们将学习目标的偏向特征定性为提出两种战略,并提供有限时间趋同保证。在我们的第一项战略中,我们提出了P-SREDA算法,其趋同率为$O(\epsilon ⁇ 3}$(o),其对美元的依赖是最佳的。在第二项战略中,我们提出了一个新的非政策性行为者-批评风格算法,名为O-SPIM。我们证明O-SPIM与总复杂性为$O(\epsilon ⁇ 4}美元($)的固定点相匹配,这与政策环境中最近一些行为者-批评性算法的趋同率相当。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年10月16日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月26日
Optimization on manifolds: A symplectic approach
Arxiv
0+阅读 · 2021年7月23日
Arxiv
6+阅读 · 2021年6月24日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年10月16日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员