We present two discrete parametric graphical models on finite decomposable graphs: the graph negative multinomial and the graph multinomial distributions. These models interpolate between the product of univariate negative multinomial and negative multinomial distributions, and between the product of binomial and multinomial distributions. We derive their Markov decomposition and present probabilistic models leading to both. Additionally, we introduce graphical versions of the Dirichlet distribution and inverted Dirichlet distribution, which serve as conjugate priors for the two discrete graphical Markov models. We derive explicit normalizing constants for both graphical Dirichlet laws, analyze their independence structure, and demonstrate that this implies strong hyper Markov property for the Bayesian models. We also provide characterization theorems for the generalized Dirichlet distributions via strong hyper Markov property. Finally we apply our findings to develop a Bayesian model selection procedure for the graphical negative multinomial model with respective Dirichlet-type priors.
翻译:我们在有限可分解图上提出了两个离散参数图形模型:图负多项分布和图多项分布。这些模型在单变量负多项式分布和负多项式分布的乘积之间以及二项式分布和多项式分布之间进行插值。我们推导了它们的马尔科夫分解,并提出了导致这两个模型的概率模型。此外,我们引入了狄利克雷分布和倒置狄利克雷分布的图形版本,它们用作两个离散图形马尔科夫模型的共轭先验。我们为两个图形狄利克雷法提供了明确的归一化常数,分析了它们的独立结构,并证明这意味着贝叶斯模型具有强超马尔科夫属性。此外,我们还通过强超马尔科夫性提供了广义狄利克雷分布的特征定理。最后,我们将我们的发现应用于开发基于相应狄利克雷型先验的图形负多项式模型的贝叶斯模型选择过程。