Randomized smoothing has established state-of-the-art provable robustness against $\ell_2$ norm adversarial attacks with high probability. However, the introduced Gaussian data augmentation causes a severe decrease in natural accuracy. We come up with a question, "Is it possible to construct a smoothed classifier without randomization while maintaining natural accuracy?". We find the answer is definitely yes. We study how to transform any classifier into a certified robust classifier based on a popular and elegant mathematical tool, Bernstein polynomial. Our method provides a deterministic algorithm for decision boundary smoothing. We also introduce a distinctive approach of norm-independent certified robustness via numerical solutions of nonlinear systems of equations. Theoretical analyses and experimental results indicate that our method is promising for classifier smoothing and robustness certification.
翻译:随机的平滑已经建立了最先进的强势性, 以极有可能的概率对抗$\ ell_ 2$ 标准对抗性攻击。 但是, 引入的高西亚数据增强导致自然精确度严重下降。 我们提出了一个问题 : “ 在保持自然精确性的同时, 能否在没有随机性的情况下构建一个平滑的分类器? ” 我们发现答案是肯定的。 我们研究如何将任何分类器转换成一个经过认证的稳健的分类器, 其基础是流行和优雅的数学工具 Bernstein 多元数学工具 。 我们的方法为决定边界平滑提供了一种确定性算法。 我们还引入了一种独特的方法, 通过非线性等式系统的数字解决方案, 以规范独立、 认证的稳健性为标准。 理论分析和实验结果显示, 我们的方法对于分类器的平稳和稳健性认证很有希望。