This paper develops a general methodology to conduct statistical inference for observations indexed by multiple sets of entities. We propose a novel multiway empirical likelihood statistic that converges to a chi-square distribution under the non-degenerate case, where corresponding Hoeffding type decomposition is dominated by linear terms. Our methodology is related to the notion of jackknife empirical likelihood but the leave-out pseudo values are constructed by leaving columns or rows. We further develop a modified version of our multiway empirical likelihood statistic, which converges to a chi-square distribution regardless of the degeneracy, and discover its desirable higher-order property compared to the t-ratio by the conventional Eicker-White type variance estimator. The proposed methodology is illustrated by several important statistical problems, such as bipartite network, two-stage sampling, generalized estimating equations, and three-way observations.


翻译:本文为多组实体编制索引的观测制定了统计推论的一般方法。 我们提出一种新的多路实验概率统计,在非变性情况下,与相对应的Hoffding型分解以线性术语为主的奇平方分布相融合。 我们的方法与jacknife经验可能性的概念有关,但假冒值则通过留下列或行来构建。 我们进一步开发了我们多路实验概率统计的修改版本,它与奇平方分布相融合,而不论退化程度如何,并发现与传统的Eicker-White型差异估计仪的t-ratio相比,其可取的较高顺序属性。 拟议的方法通过几个重要的统计问题来说明,如双方网络、两阶段抽样、通用估计方程和三道观察。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年7月27日
专知会员服务
88+阅读 · 2021年6月29日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月11日
Minimizing Sensitivity to Model Misspecification
Arxiv
0+阅读 · 2021年10月8日
Arxiv
14+阅读 · 2020年12月17日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年7月27日
专知会员服务
88+阅读 · 2021年6月29日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员