Causal reasoning is a crucial part of science and human intelligence. In order to discover causal relationships from data, we need structure discovery methods. We provide a review of background theory and a survey of methods for structure discovery. We primarily focus on modern, continuous optimization methods, and provide reference to further resources such as benchmark datasets and software packages. Finally, we discuss the assumptive leap required to take us from structure to causality.
翻译:原因推理是科学和人类智慧的一个关键部分。 为了从数据中发现因果关系,我们需要结构发现方法。 我们提供背景理论回顾和结构发现方法调查。 我们主要关注现代、持续优化方法,并引用基准数据集和软件包等进一步资源。 最后,我们讨论将我们从结构走向因果关系所需的巧妙飞跃。