Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines the scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.
翻译:大型图形处理是大数据探索的主要研究领域。 Pregel 等以 Vertex 为中心的编程模型由于简单的抽象化而获得牵引力,使得分布式系统可以自然地进行可缩放执行。然而,由于对通信间接费用比率的计算不力和迭代超级步调的缓慢趋同,这一方法导致顶端中心算法表现不佳,使偏心算法效果不佳。在本文中,我们引入了一个可缩放的子图中心框架,与一个分布式的持久性图表存储库共同设计了一个可缩放的子图中心框架,用于大型商品集群的图解分析。我们引入了一种子图中心编程式编程抽象化,将螺旋中心方法的可缩放性和共同的内存分图计算灵活性结合起来。我们绘制了与该模型连接的构件、SSSP和PageRank 算法,以说明其灵活性。此外,我们用几个真实的世界图表对GoFFish进行了实验性分析,并表明其显著的性改进程度,有些情况下,与开源中心执行的Acheard Giraph(开源中心)相比, 。