Let $G$ be graph with vertex set $V$ and order $n=|V|$. A coalition in $G$ is a combination of two distinct sets, $A\subseteq V$ and $B\subseteq V$, which are disjoint and are not dominating sets of $G$, but $A\cup B$ is a dominating set of $G$. A coalition partition of $G$ is a partition $\mathcal{P}=\{S_1,\ldots,S_k\}$ of its vertex set $V$, where each set $S_i\in \mathcal{P}$ is either a dominating set of $G$ with only one vertex, or it is not a dominating set but forms a coalition with some other set $S_j \in \mathcal{P}$. The coalition number $C(G)$ is the maximum cardinality of a coalition partition of $G$. To represent a coalition partition $\mathcal{P}$ of $G$, a coalition graph $\CG(G, \mathcal{P})$ is created, where each vertex of the graph corresponds to a member of $\mathcal{P}$ and two vertices are adjacent if and only if their corresponding sets form a coalition in $G$. A coalition partition $\mathcal{P}$ of $G$ is a singleton coalition partition if every set in $\mathcal{P}$ consists of a single vertex. If a graph $G$ has a singleton coalition partition, then $G$ is referred to as a singleton-partition graph. A graph $H$ is called a singleton coalition graph of a graph $G$ if there exists a singleton coalition partition $\mathcal{P}$ of $G$ such that the coalition graph $\CG(G,\mathcal{P})$ is isomorphic to $H$. A singleton coalition graph chain with an initial graph $G_1$ is defined as the sequence $G_1\rightarrow G_2\rightarrow G_3\rightarrow\cdots$ where all graphs $G_i$ are singleton-partition graphs, and $\CG(G_i,\Gamma_1)=G_{i+1}$, where $\Gamma_1$ represents a singleton coalition partition of $G_i$. In this paper, we address two open problems posed by Haynes et al. We characterize all graphs $G$ of order $n$ and minimum degree $\delta(G)=2$ such that $C(G)=n$ and investigate the singleton coalition graph chain starting with graphs $G$ where $\delta(G)\le 2$.
翻译:----
设$G$为具有顶点集$V$和阶$n = |V|$的图。在$G$中,联盟是两个不同的集合$A\subset V$和$B\subset V$的组合,它们不是$G$的支配集但$A\cup B$是$G$的支配集。$G$的联盟分割是$V$的分割$\mathcal{P} = \{S_1,\ldots,S_k\}$,其中每个集合$S_i\in\mathcal{P}$要么是仅包含一个顶点的$G$的支配集,要么不是一个支配集,但与$\mathcal{P}$ 中的一些其他集合$S_j \in \mathcal{P}$组成联盟。联盟数 $C(G)$是$G$的最大联盟分割的基数。为了表示$G$的联盟分割$\mathcal{P}$,创建联盟图$\CG(G, \mathcal{P})$,其中图的每个顶点对应于$\mathcal{P}$的一个成员,当且仅当它们对应的集合在$G$中形成联盟时,两个顶点是相邻的。如果$\mathcal{P}$中的每个集合都是单个顶点,那么$G$的联盟分割是单例联盟分割。如果图$G$有一个单例联盟分割,那么$G$称为一个单例分割图。如果存在$G$的单例联盟分割$\mathcal{P}$,使得联盟图$\CG(G,\mathcal{P})$与$H$同构,则图$H$是图$G$的一个单例联盟图。一个初始图$G_1$的单例联盟图链被定义为序列$G_1\rightarrow G_2\rightarrow G_3\rightarrow\cdots$,其中所有图$G_i$都是单例分割图,并且$\CG(G_i,\Gamma_1) = G_{i+1}$,其中$\Gamma_1$表示$G_i$的单例联盟分割。在本文中,我们解决了Haynes等人提出的两个未解决问题。我们表征了所有阶为$n$且最小度$\delta(G)=2$的图$G$,使得$C(G)=n$并研究了从$\delta(G)\le 2$的图$G$开始的单例联盟图链。