The ability to train randomly initialised deep neural networks is known to depend strongly on the variance of the weight matrices and biases as well as the choice of nonlinear activation. Here we complement the existing geometric analysis of this phenomenon with an information theoretic alternative. Lower bounds are derived for the mutual information between an input and hidden layer outputs. Using a mean field analysis we are able to provide analytic lower bounds as functions of network weight and bias variances as well as the choice of nonlinear activation. These results show that initialisations known to be optimal from a training point of view are also superior from a mutual information perspective.


翻译:据知,培训随机初始深神经网络的能力在很大程度上取决于重量矩阵和偏差的差异以及非线性激活的选择。这里我们用信息理论替代方法补充目前对这一现象的几何分析。输入和隐藏层输出之间的相互信息取自较低界限。我们利用一种中性的实地分析,能够提供分析下界线,作为网络重量和偏差的函数,以及非线性激活的选择。这些结果显示,从培训角度已知最佳的初始化从相互信息角度来说也更优越。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
CIKM2020最佳论文出炉!NUS《图表示假新闻检测》摘获!
专知会员服务
26+阅读 · 2020年10月24日
【ACMMM2020-北航】协作双路径度量的小样本学习
专知会员服务
29+阅读 · 2020年8月11日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【Strata Data Conference】用于自然语言处理的深度学习方法
专知会员服务
49+阅读 · 2019年9月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员