Near-field Acoustic Holography (NAH) is a well-known problem aimed at estimating the vibrational velocity field of a structure by means of acoustic measurements. In this paper, we propose a NAH technique based on Convolutional Neural Network (CNN). The devised CNN predicts the vibrational field on the surface of arbitrary shaped plates (violin plates) with orthotropic material properties from a limited number of measurements. In particular, the architecture, named super resolution CNN (SRCNN), is able to estimate the vibrational field with a higher spatial resolution compared to the input pressure. The pressure and velocity datasets have been generated through Finite Element Method simulations. We validate the proposed method by comparing the estimates with the synthesized ground truth and with a state-of-the-art technique. Moreover, we evaluate the robustness of the devised network against noisy input data.
翻译:近场声波整体学(NAH)是一个众所周知的问题,目的是通过声学测量来估计一个结构的振动速度场。在本文中,我们提议以进化神经网络(CNN)为基础采用NAH技术。设计出来的有线电视新闻网从数量有限的测量中预测具有正方形材料特性的任意形状板块(紫外板)表面的振动场。特别是,称为超级分辨率CNN(SRCNN)的建筑能够以比输入压力更高的空间分辨率来估计振动场。压力和速度数据集是通过精密元素方法模拟产生的。我们通过将估计数与合成的地面真象和最新技术进行比较来验证拟议方法。此外,我们还评估了设计网络的强度,以对抗噪音输入数据。