Internet of Things (IoT) devices are available in a multitude of scenarios, and provide constant, contextual data which can be leveraged to automatically reconfigure and optimize smart environments. To realize this vision, Artificial Intelligence (AI) and deep learning techniques are usually employed, however they need large quantity of data which is often not feasible in IoT scenarios. Digital Twins (DTs) have recently emerged as an effective way to replicate physical entities in the digital domain, to allow for simulation and testing of models and services. In this paper, we present a novel architecture based on the emerging Web of Things (WoT) standard, which provides a DT of a smart environment and applies Deep Reinforcement Learning (DRL) techniques on real time data. We implement our system in a real deployment, and test it along with a legacy system. Our findings show that the benefits of having a digital twin, specifically for DRL models, allow for faster convergence and finer tuning.


翻译:各种情况中都存在物的互联网(IoT)装置,它提供了可自动重新配置和优化智能环境的经常性背景数据。为了实现这一愿景,通常使用人工智能和深层学习技术,但它们需要大量数据,但在IoT情景中往往不可行。数字双胞胎(DTs)最近作为一种在数字领域复制物理实体的有效方式出现,以便模拟和测试模型和服务。在本文中,我们介绍了一个基于新兴的“物网(WoT)”标准的新颖结构,该标准提供了智能环境的脱钩,并将深强化学习技术应用于实时数据。我们实际应用了我们的系统,并与遗留系统一起测试。我们的调查结果显示,数字双胞胎(特别是DRL模型)的好处是能够更快地趋同和微调。

0
下载
关闭预览

相关内容

Mac 平台下的最佳 GTD 软件之一.有 iOS 版本. culturedcode.com/things
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
31+阅读 · 2023年1月8日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员