Real-time Digital Twinning of physical world scenes onto the Metaverse is necessary for a myriad of applications such as augmented-reality (AR) assisted driving. In AR assisted driving, physical environment scenes are first captured by Internet of Vehicles (IoVs) and are uploaded to the Metaverse. A central Metaverse Map Service Provider (MMSP) will aggregate information from all IoVs to develop a central Metaverse Map. Information from the Metaverse Map can then be downloaded into individual IoVs on demand and be delivered as AR scenes to the driver. However, the growing interest in developing AR assisted driving applications which relies on digital twinning invites adversaries. These adversaries may place physical adversarial patches on physical world objects such as cars, signboards, or on roads, seeking to contort the virtual world digital twin. Hence, there is a need to detect these physical world adversarial patches. Nevertheless, as real-time, accurate detection of adversarial patches is compute-intensive, these physical world scenes have to be offloaded to the Metaverse Map Base Stations (MMBS) for computation. Hence in our work, we considered an environment with moving Internet of Vehicles (IoV), uploading real-time physical world scenes to the MMBSs. We formulated a realistic joint variable optimization problem where the MMSPs' objective is to maximize adversarial patch detection mean average precision (mAP), while minimizing the computed AR scene up-link transmission latency and IoVs' up-link transmission idle count, through optimizing the IoV-MMBS allocation and IoV up-link scene resolution selection. We proposed a Heterogeneous Action Proximal Policy Optimization (HAPPO) (discrete-continuous) algorithm to tackle the proposed problem. Extensive experiments shows HAPPO outperforms baseline models when compared against key metrics.


翻译:实时数字孪生物理世界场景进入元宇宙对于许多应用程序(例如增强现实(AR)辅助驾驶)是必要的。在AR辅助驾驶中,物理环境场景首先由车联网设备(IoVs)捕获,然后上传到元宇宙中。中央元宇宙地图服务提供者(MMSP)将从所有IoVs聚合信息,以开发出中央元宇宙地图。可以从元宇宙地图下载信息,并按需分发为驾驶员的AR场景。然而,数字孪生应用程序所依赖的数字孪生技术的快速发展吸引了对手。这些对手可能会在物理世界上的物体上放置物理对抗贴片,例如汽车、路标或道路,试图扭曲虚拟世界的数字孪生。因此,需要检测这些物理世界的对抗贴片。然而,由于对抗性贴片的实时精确定位需要计算量大,这些物理世界场景需要被卸载到元宇宙地图基站(MMBS)进行计算处理。因此,在我们的工作中,我们考虑了一个环境,其中移动的车联网设备不断上传实时物理世界场景到MMBS。我们制定了一个现实的联合变量优化问题,其中MMSP的目标是最大化对抗贴片检测的平均精确度(mAP),同时通过优化IoV-MMBS分配和IoV上传链路场景分辨率选择来最小化计算的AR场景上传延迟和IoV上传链路空闲计数。我们提出了一个异构行为近端策略优化(HAPPO)(离散-连续)算法来解决此问题。大量实验表明,当与关键指标进行比较时,HAPPO优于基线模型。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
33+阅读 · 2021年9月16日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年9月16日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员