Non-cooperative game theory provides a robust framework for analyzing distributed resource allocation in multi-user wireless networks, with \emph{Iterative Water-Filling} (IWF) emerging as a canonical solution for power control problems. Although classical fixed-point theorems guarantee the existence of a Nash Equilibrium (NE) under mild concavity and compactness conditions, the convergence of practical iterative algorithms to that equilibrium remains a challenging endeavor. This challenge intensifies under varying update schedules, interference regimes, and imperfections such as channel estimation errors or feedback delay. In this paper, we present an in-depth examination of IWF in multi-user systems under three different update schemes: (1) synchronous \emph{sequential} updates, (2) synchronous \emph{simultaneous} updates, and (3) \emph{totally asynchronous} updates. We first formulate the water-filling operator in a multi-carrier environment, then recast the iterative process as a fixed-point problem. Using contraction mapping principles, we demonstrate sufficient conditions under which IWF converges to a unique NE and highlight how spectral radius constraints, diagonal dominance, and careful step-size selection are pivotal for guaranteeing convergence. We further discuss robustness to measurement noise, partial updates, and network scaling to emphasize the practical viability of these schemes. This comprehensive analysis unifies diverse threads in the literature while offering novel insights into asynchronous implementations. Our findings enable network designers to ascertain system parameters that foster both stable convergence and efficient spectrum usage.
翻译:暂无翻译