This paper discusses the challenges of using big Earth observation data for land classification. The approach taken is to consider pure data-driven methods to be insufficient to represent continuous change. We argue for sound theories when working with big data. After revising existing classification schemes such as FAO's Land Cover Classification System (LCCS), we conclude that LCCS and similar proposals cannot capture the complexity of landscape dynamics. We then investigate concepts that are being used for analyzing satellite image time series; we show these concepts to be instances of events. Therefore, for continuous monitoring of land change, event recognition needs to replace object identification as the prevailing paradigm. The paper concludes by showing how event semantics can improve data-driven methods to fulfil the potential of big data.
翻译:本文讨论了使用大型地球观测数据进行土地分类的挑战。我们采取的方法是考虑纯数据驱动方法不足以代表持续的变化。我们主张在使用大数据时要有合理的理论。在修订粮农组织土地覆盖分类系统(LCCS)等现有分类办法之后,我们的结论是,LCCS和类似建议无法反映地貌动态的复杂性。然后我们调查用于分析卫星图像时间序列的概念;我们将这些概念显示为事件实例。因此,为了不断监测土地变化,事件识别需要取代目标识别作为主流范例。文件最后指出事件语义学如何能改善数据驱动的方法以发挥大数据的潜力。