Estimation of link travel time correlation of a bus route is essential to many bus operation applications, such as timetable scheduling, travel time forecasting and transit service assessment/improvement. Most previous studies rely on either independent assumptions or simplified local spatial correlation structures. In the real world, however, link travel time on a bus route could exhibit complex correlation structures, such as long-range correlations, negative correlations, and time-varying correlations. Therefore, before introducing strong assumptions, it is essential to empirically quantify and examine the correlation structure of link travel time from real-world bus operation data. To this end, this paper develops a Bayesian Gaussian model to estimate the link travel time correlation matrix of a bus route using smart-card-like data. Our method overcomes the small-sample-size problem in correlation matrix estimation by borrowing/integrating those incomplete observations (i.e., with missing/ragged values and overlapped link segments) from other bus routes. Next, we propose an efficient Gibbs sampling framework to marginalize over the missing and ragged values and obtain the posterior distribution of the correlation matrix. Three numerical experiments are conducted to evaluate model performance. We first conduct a synthetic experiment and our results show that the proposed method produces an accurate estimation for travel time correlations with credible intervals. Next, we perform experiments on a real-world bus route with smart card data; our results show that both local and long-range correlations exist on this bus route. Finally, we demonstrate an application of using the estimated covariance matrix to make probabilistic forecasting of link and trip travel time.


翻译:估计公共汽车路线的连接旅行时间相关性对于许多公共汽车业务应用程序至关重要,例如时间表安排、旅行时间预测和过境服务评估/改进等,此前的研究大多依靠独立假设或简化当地空间相关结构。然而,在现实世界中,公共汽车路线上的连接旅行时间可能显示复杂的关联结构,例如长距离关联、负相关和时间变化相关。因此,在引入强有力的假设之前,必须从经验上量化和审查从真实世界公共汽车业务数据中连接旅行时间的关联结构。为此,本文开发了拜斯登高斯模型,用以估计使用智能卡类数据的公共汽车路线的连接旅行时间关系矩阵。在使用这些不完全的观察(即缺少/粘塞值和重叠连接段)来克服相关的矩阵估计中的小抽样问题。因此,在引入强有力的假设之前,我们建议一个高效的Gib抽样框架,将缺失和破碎的公共汽车业务运行数据流数据流数据流数据流数据流的连接度与相关行距矩阵的远端分配。我们用三个数字实验方法,通过借用这些不完全的模型来进行真实的模型评估。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Warped Dynamic Linear Models for Time Series of Counts
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员