项目名称: 不确定条件下车用燃料电池故障预测

项目编号: No.61304114

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 吴小娟

作者单位: 电子科技大学

项目金额: 24万元

中文摘要: 作为燃料电池汽车的核心部件,车用燃料电池健康运行是确保燃料电池汽车安全行驶的关键。膜干和水淹是车用燃料电池最常见的两种故障,也是影响其健康的重要因素。当前对膜干和水淹故障研究主要集中在诊断故障是否发生,缺乏能有效预测何时发生故障的方法。本项目在申请者近年来从事燃料电池控制与优化研究基础上,利用基于老化因子的隐式半马尔科夫模型与动态失效率模型相结合的方法,对上述两种不确定条件下的车用燃料电池膜干和水淹故障进行预测研究。研究内容主要包括:考虑燃料电池老化不确定性影响,建立基于老化因子的隐式半马尔科夫故障诊断及预测模型;基此利用极大似然函数估计方法对膜干和水淹故障早期衰退进行诊断;进一步针对燃料电池操作条件的不确定性影响,构建动态失效率模型,预测发生膜干或水淹故障的有效剩余寿命。本项目研究为燃料电池汽车最优维护提供分析方法和科学依据。

中文关键词: 燃料电池;混合模型;隐式半马尔科夫模型;经验模型;预测

英文摘要: As the core component of fuel cell vechiles, the healthy operation of fuel cell is the key to ensure fuel cell vehicles safe driving. Membrane drying and water flooding are the most common faults, which have a great influence on the health of fuel cell. The current research on the membrane drying and water flooding is mainly concentrated in the fault diagnostics.However, few of them addresses the prediction of the remaining life, especially considering the fuel cell aging and the operating parameters (temperature, humidity, etc.) uncertainty. Based on the research in the fuel cell system, the applicant proposes an improved method which combines an age-dependent Hidden semi-Markov Model(HSMM)and a dynamic failure rate model. The study mainly includes as follows. Firstly introduce an aging factor to the HSMM to describe the uncertainty of fuel cell aging. Then the maximum likelihood function is used to recognize the symptoms of the fuel cell membrane drying and water flooding.Lastly considering the uncertainty of the operating conditions in the fuel cell, built a dynamic failure rate model to predict the remaining life of the fuel cell. This project provides an analysis method and scientific basis for the optimal maintenance of fuel cell vehicles.

英文关键词: Fuel cell;Hybrid model;Hidden semi-Markov model;Empirical model;Prognostic

成为VIP会员查看完整内容
0

相关内容

工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
一图掌握《可解释人工智能XAI》操作指南
专知会员服务
59+阅读 · 2021年5月3日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
工业人工智能的关键技术及其在预测性维护中的应用现状
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
264+阅读 · 2020年6月10日
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
61+阅读 · 2020年5月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
机器学习之确定最佳聚类数目的10种方法
炼数成金订阅号
13+阅读 · 2017年10月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关VIP内容
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
一图掌握《可解释人工智能XAI》操作指南
专知会员服务
59+阅读 · 2021年5月3日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
工业人工智能的关键技术及其在预测性维护中的应用现状
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
264+阅读 · 2020年6月10日
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
61+阅读 · 2020年5月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员