As Large Language Models (LLMs) demonstrate increasingly human-like abilities in various natural language processing (NLP) tasks that are bound to become integral to personalized technologies, understanding their capabilities and inherent biases is crucial. Our study investigates the potential of LLMs like ChatGPT to infer psychological dispositions of individuals from their digital footprints. Specifically, we assess the ability of GPT-3.5 and GPT-4 to derive the Big Five personality traits from users' Facebook status updates in a zero-shot learning scenario. Our results show an average correlation of r = .29 (range = [.22, .33]) between LLM-inferred and self-reported trait scores. Furthermore, our findings suggest biases in personality inferences with regard to gender and age: inferred scores demonstrated smaller errors for women and younger individuals on several traits, suggesting a potential systematic bias stemming from the underlying training data or differences in online self-expression.
翻译:暂无翻译