We consider decentralized machine learning over a network where the training data is distributed across $n$ agents, each of which can compute stochastic model updates on their local data. The agent's common goal is to find a model that minimizes the average of all local loss functions. While gradient tracking (GT) algorithms can overcome a key challenge, namely accounting for differences between workers' local data distributions, the known convergence rates for GT algorithms are not optimal with respect to their dependence on the mixing parameter $p$ (related to the spectral gap of the connectivity matrix). We provide a tighter analysis of the GT method in the stochastic strongly convex, convex and non-convex settings. We improve the dependency on $p$ from $\mathcal{O}(p^{-2})$ to $\mathcal{O}(p^{-1}c^{-1})$ in the noiseless case and from $\mathcal{O}(p^{-3/2})$ to $\mathcal{O}(p^{-1/2}c^{-1})$ in the general stochastic case, where $c \geq p$ is related to the negative eigenvalues of the connectivity matrix (and is a constant in most practical applications). This improvement was possible due to a new proof technique which could be of independent interest.
翻译:我们考虑在一个网络上进行分散的机器学习,在网络上,培训数据分布在1美元代理商之间,每个代理商都可以计算其本地数据的随机模型更新。该代理商的共同目标是找到一个模型,最大限度地减少所有本地损失功能的平均值。虽然梯度跟踪算法可以克服一个关键挑战,即计算工人当地数据分布之间的差异,但GT算法已知的趋同率对于他们依赖混合参数$p$(与连通矩阵的光谱差距有关)不是最佳的。我们更严格地分析了在强共、 convex和非convex设置中的GT方法。我们改进了对$p$的依赖,从$\mathcal{O}(p}1}(p}c}-1}-1}}(}}美元)到无噪音情况下的$\mathcal{O}(p\}-3/2}美元至$mathcal{O}GTUTF方法的负值,在一般连通度应用中,这种直观的直观和直观的直径分析技术的常值可能为正值。