We propose a novel method to sparsify attention in the Transformer model by learning to select the most-informative token representations during the training process, thus focusing on task-specific parts of the input. A reduction of quadratic time and memory complexity to sublinear was achieved due to a robust trainable top-k operator. For example, our experiments on a challenging summarization task of long documents show that our method is over 3 times faster and up to 16 times more memory efficient while significantly outperforming both dense and state-of-the-art sparse transformer models. The method can be effortlessly applied to many models used in NLP and CV, simultaneously with other improvements.


翻译:我们提出一种新的方法,通过学习在培训过程中选择信息最丰富的象征性表示方式来分散变异器模型的注意力,从而集中关注投入中的任务特定部分。由于一个强大的可培训的顶级操作员,四边时间和内存的复杂性已经降低到亚线性。例如,我们对具有挑战性的长文件总结任务的实验表明,我们的方法比高3倍,记忆效率高16倍,同时大大超过密度和最先进的稀有变异器模型。这种方法可以不费力地应用于NLP和CV中的许多模型,同时进行其他改进。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2021年2月16日
最新《Transformers模型》教程,64页ppt
专知会员服务
311+阅读 · 2020年11月26日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
104+阅读 · 2020年8月30日
专知会员服务
61+阅读 · 2020年3月19日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2021年2月16日
最新《Transformers模型》教程,64页ppt
专知会员服务
311+阅读 · 2020年11月26日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
104+阅读 · 2020年8月30日
专知会员服务
61+阅读 · 2020年3月19日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员