项目名称: 稀土RE-Mn-Fe体系相图及稀土对MnFe合金磁致伸缩性能的影响

项目编号: No.51461012

项目类型: 地区科学基金项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 马垒

作者单位: 桂林电子科技大学

项目金额: 48万元

中文摘要: 测定稀土RE-Mn-Fe(RE=Pr、Tb、Dy、Gd)体系相图,系统研究稀土元素对MnFe合金晶体结构、磁相变和超磁致伸缩性能的影响,探讨合金的磁致伸缩性能与γ奥氏体-ε马氏体结构相变和反铁磁转变之间的内在关联性,澄清γ-MnFe合金产生超磁致伸缩性能的现有模糊理论,并结合稀土独特的4f电子层结构和放电等离子烧结(SPS)、深过冷定向凝固等材料制备技术,制备大磁致伸缩系数、低饱和磁场的γ-MnFe合金,开发新型、高效的磁致伸缩材料,推动γ-MnFe合金在超磁致伸缩器件中的应用。本项目的完成可为科学设计γ-MnFe超磁致伸缩合金提供科学的实验数据和理论依据。

中文关键词: 合金相图;MnFe合金;金属间化合物;相变;磁致伸缩

英文摘要: In this project, the isothermal sections of the phase diagram of RE-Mn-Fe (RE=Pr, Tb, Dy, Gd) systems will be determined. The effect of the rare-earth elements on the crystal structure, magnetic phase transition and giant magnetostrictive characteristics of MnFe alloys will be investigated,and the interrelationship among γaustenite -εmartensite structural phase transition, antiferromagnetic phase transition and magnetostrictive effect will be explored, in order to clarify the existing fuzzy mechanism for the giant magnetostrictive properties of the γ-MnFe alloys. By making use of the unique 4f electronic structure of the rare earth and the preparation techniques, such as spark plasma sintering (SPS) and high undercooling directional solidification, the γ-MnFe alloys with large magnetostrictive coefficient and low saturation magnetic field will be prepared,in order to develope new and efficient magnetostrictive materials and promote their applications in device. The outcome of these research will provide valuable experimental data and theoretical base for the design of novel rare-earth-MnFe functional materials.

英文关键词: Phase diagram;MnFe alloys;Intermetallics;Phase transition;Magnetostriction

成为VIP会员查看完整内容
0

相关内容

【ETH博士论文】贝叶斯深度学习,241页pdf
专知会员服务
125+阅读 · 2022年1月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
42+阅读 · 2021年2月8日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
19+阅读 · 2021年6月15日
小贴士
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员